
E: Rayleigh Quotient and the Minimization
Principle

We just consider here the Sturm-Liouville problem (11), page 5 in Section
18, with Dirichlet boundary conditions at both x = a, b to give you a taste
of the arguments needed for the minimization principle.

Referring back to the Rayleigh quotient on page 9 of Section 18, it is
a functional, meaning it is a function that is defined on a domain of func-
tions, and gives a real number. Thus, we need to define an admissible set
of functions for its domain. Take A to mean the set of continuous functions
ψ = ψ(x) on [a, b], ψ is not identically the zero function, such that dψ/dx is
piecewise continuous on (a, b), and ψ(a) = ψ(b) = 0. Therefore, for any ψ in
A,

R[ψ] =

∫ b
a
{p(dψ

dx
)2 + qψ2}dx∫ b

a
σψ2dx

is well-defined.

Theorem:

1. minψ∈AR[ψ] exists and is equal to the first eigenvalue λ1 of the asso-
ciated eigenvalue problem (12);

2. There exists a function φ ∈ A such that R[φ] = minψ∈AR[ψ]. Up to
an arbitrary multiplicative constant, φ is the eigenfunction associated
with the eigenvalue λ1.

This is a really neat result, but the proof is beyond the scope of these Notes.
However, see the end of this appendix for a proof in a special case.

One can use this idea to estimate λ1 in situations where variable co-
efficients in the equation prevent us from getting an explicit formula for
λ1. The idea is that for any ψ in A, R[ψ] ≥ λ1, so we would like to find
a sequence of “trial” functions ψi from A such that R[ψi+1] ≤ R[ψi] and
limi→∞R[ψi] = λ1. Ideally, the ψ′

is would be of one sign since, from the
Sturm-Liouville theorem we know the function satisfying the minimization
principle in part 1 of the Theorem is an eigenfunction of λ1 and so has no
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zeros in (a, b).

Example:
d2φ
dx2 + λφ = 0 0 < x < π
φ(0) = φ(π) = 0

So p ≡ 1, q ≡ 0, σ ≡ 1 and therefore R[ψ] =
∫ π

0
(dψ
dx

)2dx/
∫ π

0
ψ2dx. Of course,

in this case, we know λ1 = 1 and φ1(x) = sin(x). So,
A = {ψ ∈ C[0, π], ψ′ is piecewise continuous on [0, π], ψ(0) = ψ(π) = 0}.

If, for example, ψ1(x) = x(π − x), which is in A, then R[ψ1] = π3/3
π5/30

=
10
π2 ' 1.0132, which is a reasonable first estimate for λ1. If we try ψ2(x) = rx
for 0 ≤ x ≤ π/2, and ψ2(x) = r(π − x) for π/2 ≤ x ≤ π, r > 0 fixed, the
“roof” function, then R[ψ2] = r2π

r2π3/12
= 12

π2 ' 1.216, which is not nearly as
good. Part of the reason is that ψ2 is “kinked”; it is not smooth enough to
satisfy the equation in the whole interval, though R[ψ2] is well-defined.

We are not going to pursue this line of thought further, but we will men-
tion that the minimization principle can be extended to characterize the
successive eigenvalues λ2, λ3, . . ..

Outline of the Minimization Principle for the first eigenvalue for
the simplest eigenvalue problem

Consider the eigenvalue problem
d2φ
dx2 + λφ = 0 0 < x < 1

φ(0) = 0 = φ(1)

Then the Rayleigh quotient is R[φ] =
∫ 1

0
(φ′)2dx/

∫ 1

0
φ2dx. Let A := all

continuously differentiable functions defined on [0, 1] which are zero at x =
0, 1, and let

m = min
ψ∈A
R[ψ] . (1)

The claim is that m equals the first (smallest) eigenvalue λ1, and any solu-
tion φ(x) to (1) is its eigenfunction. By solution we mean that for all ψ ∈ A,
R[φ] ≤ R[ψ], and φ 6= 0. If we think of R[·] as a form of energy functional,
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then we can interpret the minimization principle as stating a common physi-
cal principle, that is, the first eigenvalue is the minimum of the energy. Then
the eigenfunction φ(x) is the physical system’s “ground state.” Our set of
admissible functions, A, is often called the set of trial functions.

Suppose φ is a solution to (1), and let ε be any constant, and v be any
admissible (trial) function. Then

R[φ] ≤ R[φ+ εv] := f(ε)

By ordinary calculus, f ′(0) = 0 (since f has a critical point at ε = 0). Now

f(ε)− f(0)

ε
=

1

ε

{∫ 1

0
(φ′2 + 2εφ′v′ + ε2v′2)dx∫ 1

0
(φ2 + 2εφv + ε2v2)dx

−
∫ 1

0
φ′2dx∫ 1

0
φ2dx

}
=

1

ε

{
(
∫ 1

0
φ2dx)[

∫ 1

0
φ′2dx+ 2ε

∫ 1

0
φ′v′dx+O(ε2)]− (

∫ 1

0
φ′2dx)[

∫ 1

0
φ2dx+ 2ε

∫ 1

0
φvdx+O(ε2)]

(
∫ 1

0
φ2dx)(

∫ 1

0
(φ2 + 2εφv + ε2v2)dx)

}
=

2

{
(
∫ 1

0
φ2dx)[

∫ 1

0
φ′v′dx+O(ε)]− (

∫ 1

0
φ′2dx)[

∫ 1

0
φvdx+O(ε)]

(
∫ 1

0
φ2dx)2 +O(ε)

}
where O(ε) means terms of the order ε. Thus

f ′(0) = lim
ε→0

f(ε)− f(0)

ε
= 2

(
∫ 1

0
φ2dx)(

∫ 1

0
φ′v′dx)− (

∫ 1

0
φ′2dx)(

∫ 1

0
φvdx)

(
∫ 1

0
φ2dx)2

Therefore, f ′(0) = 0 if, and only if

(

∫ 1

0

φ2dx)(

∫ 1

0

φ′v′dx) = (

∫ 1

0

(φ′)2dx)(

∫ 1

0

φvdx) ,

that is,

m = R[φ] =

∫ 1

0
φ′v′dx∫ 1

0
φvdx

.

Since
∫ 1

0
φ′v′dx = −

∫ 1

0
φ′′vdx (integration-by-parts)

we have

−
∫ 1

0

φ′′vdx = m

∫ 1

0

φvdx , or 0 =

∫ 1

0

v{φ′′ +mφ}dx .
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Since this holds for all v ∈ A, then φ′′ + mφ = 0 in (0, 1). Thus m is an
eigenvalue, with eigenfunction φ. To show m is the smallest eigenvalue of the
problem, let λ be any other eigenvalue, with eigenfunction w; i.e. w′′+λw = 0
in (0, 1), with w(0) = w(1) = 0, w 6= 0. By the definition of m in (1),

m ≤ R[w] =

∫ 1

0
w′2dx∫ 1

0
w2dx

=
−
∫ 1

0
ww′′dx∫ 1

0
w2dx

=
λ
∫ 1

0
w2dx∫ 1

0
w2dx

= λ .

So, m is smaller than any other eigenvalue.

Remark: This whole argument generalizes to higher dimensions, that is, to
∇2φ + λφ = 0 in bounded domain Ω ⊂ Rn, φ|∂Ω

= 0, where now the claim
would be

λ1 = m = min{
∫

Ω

|∇ψ|2dx/
∫

Ω

|ψ|2dx}

Green’s first identity is used to get to the result rather than using the 1D
integration-by-parts formula.
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