E: Rayleigh Quotient and the Minimization
Principle

We just consider here the Sturm-Liouville problem (11), page 5 in Section
18, with Dirichlet boundary conditions at both x = a,b to give you a taste
of the arguments needed for the minimization principle.

Referring back to the Rayleigh quotient on page 9 of Section 18, it is
a functional, meaning it is a function that is defined on a domain of func-
tions, and gives a real number. Thus, we need to define an admissible set
of functions for its domain. Take A to mean the set of continuous functions
¥ =1(x) on [a,b], ¥ is not identically the zero function, such that di/dx is
piecewise continuous on (a,b), and ¢(a) = ¥ (b) = 0. Therefore, for any 1 in
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is well-defined.

Theorem:

1. minge4 R[¢] exists and is equal to the first eigenvalue \; of the asso-
ciated eigenvalue problem (12);

2. There exists a function ¢ € A such that R[¢] = mingcaR[¢]. Up to
an arbitrary multiplicative constant, ¢ is the eigenfunction associated
with the eigenvalue \;.

This is a really neat result, but the proof is beyond the scope of these Notes.
However, see the end of this appendix for a proof in a special case.

One can use this idea to estimate A; in situations where variable co-
efficients in the equation prevent us from getting an explicit formula for
A1. The idea is that for any ¢ in A, R[] > A, so we would like to find
a sequence of “trial” functions 1; from A such that R[¢;11] < R[] and
lim; ;o R[] = A1, Ideally, the s would be of one sign since, from the
Sturm-Liouville theorem we know the function satisfying the minimization
principle in part 1 of the Theorem is an eigenfunction of \; and so has no



zeros in (a, b).

Ezxample:
de-l—)\gb—O O<zx<m
¢(0) = ¢(m) =0

Sop=1,4¢=0,0=1and therefore R[] = [ (%)2dx/ [ 1*dz. Of course,
in this case, we know A\; = 1 and ¢;(z) = sin(x). So,
A ={y € C[0, 7,9 is piecewise continuous on [0, 7], (0) = ¥ (7) = 0}.

If, for example, ¢ (z) = x(m — x), which is in A, then R[] = ;:—/;6 =
9 ~ 1.0132, which is a reasonable first estimate for A;. If we try ¥q(z) = ra
for 0 <z < 7/2, and Ys(x )—T(?T—ZL’) for /2 < x <7, r >0 fixed, the
“roof” function, then R[is] = % = —5 =~ 1.216, which is not nearly as
good. Part of the reason is that s is “klnked”, it is not smooth enough to
satisfy the equation in the whole interval, though R[t] is well-defined.
We are not going to pursue this line of thought further, but we will men-
tion that the minimization principle can be extended to characterize the

successive eigenvalues Ag, A3, . . ..

Outline of the Minimization Principle for the first eigenvalue for
the simplest eigenvalue problem

Consider the eigenvalue problem

d?¢ _
= tAp=0 0<z<l1

¢(0) =0 = ¢(1)

Then the Rayleigh quotient is R[¢] = f01(¢’)2d3:/ fol P*dr. Let A := all
continuously differentiable functions defined on [0, 1] which are zero at = =
0,1, and let
= mi . 1

m = min R{)] (1)
The claim is that m equals the first (smallest) eigenvalue A1, and any solu-
tion ¢(z) to (1) is its eigenfunction. By solution we mean that for all ¢ € A,
Rl¢] < R[¢], and ¢ # 0. If we think of R[] as a form of energy functional,



then we can interpret the minimization principle as stating a common physi-
cal principle, that is, the first eigenvalue is the minimum of the energy. Then
the eigenfunction ¢(z) is the physical system’s “ground state.” Our set of
admissible functions, A, is often called the set of trial functions.

Suppose ¢ is a solution to (1), and let ¢ be any constant, and v be any
admissible (trial) function. Then

RI8) < Rl6+ 0] = (&)
By ordinary calculus, f’(0) = 0 (since f has a critical point at € = 0). Now
£ = 10)
£
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: (Jo 62dz)(fy (62 + 2660 + £20?)dx) -
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where O(e) means terms of the order €. Thus
£10) = tim LEL = SO) _ Uy $*de)(fy #v'de) — (Jy 6P de)(Jy guda)
e—0 € ( fol P2dx)?
Therefore, f'(0) = 0 if, and only if
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that is,
1y
d
m = Rfg] = o S0
fo ovdx
Since fol Yv'dr = — fol ¢"vdr  (integration-by-parts)
we have

1 1 1
- "vdx = dz 0= i dx .
/0 ¢"vdx m/o ¢vdxr , or /0 v{¢" + mo}tdx

3



Since this holds for all v € A, then ¢ + m¢ = 0 in (0,1). Thus m is an
eigenvalue, with eigenfunction ¢. To show m is the smallest eigenvalue of the
problem, let A be any other eigenvalue, with eigenfunction w; i.e. w”"4+Aw =0
in (0,1), with w(0) = w(1) = 0, w # 0. By the definition of m in (1),
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So, m is smaller than any other eigenvalue.

Remark: This whole argument generalizes to higher dimensions, that is, to
V26 4+ A¢ = 0 in bounded domain Q C R, ¢|,, = 0, where now the claim
would be

M= m = min{/Q |w|2dgg//Q o 2da}

Green’s first identity is used to get to the result rather than using the 1D
integration-by-parts formula.



